1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391
//! This module contains types related to railway simulations.
//!
//! A railway simulation consists of a railway graph representing the infrastructure and a
//! list of movable railway objects, such as trains, within the simulation. The module
//! provides a `Simulation` struct to manage the state of the simulation.
use self::{
agents::{DecisionAgent, RailMovableAction},
environment::{ObservableEnvironment, ObservableEnvironmentRef},
};
use crate::{
algorithms::is_middle_coord_between,
prelude::{RailwayGraph, RailwayGraphExt},
railway_algorithms::{RailwayEdgeAlgos, RailwayGraphAlgos},
railway_objects::{GeoLocation, Movable, NextTarget, RailwayObject, Train},
types::RailwayObjectId,
};
use std::collections::HashMap;
use std::fmt;
use std::time::Duration;
pub mod agents;
pub mod environment;
use bevy::prelude::warn;
pub use environment::SimulationEnvironment;
use rand::seq::SliceRandom;
use uom::si::{
acceleration::{meter_per_second_squared, Acceleration},
f64::{Length, Time},
length::meter,
time::second,
};
mod simulation_executor;
use crate::simulation::events::{RailMovableEvent, SimulationEvent, TargetReachedEvent};
use crate::simulation::metrics::{ActionCountHandler, MetricsHandler, TargetReachedHandler};
pub use simulation_executor::SimulationExecutor;
pub mod commands;
pub mod events;
pub mod metrics;
#[cfg(test)]
mod tests;
/// A trait that defines an object within the simulation that can move along a railway.
pub trait SimulationObject:
RailwayObject + Movable + NextTarget + GeoLocation + Send + Sync
{
}
impl<T: RailwayObject + Movable + NextTarget + GeoLocation + Send + Sync> SimulationObject for T {}
/// A `Simulation` struct holding a railway graph and a list of moveable railway objects.
pub struct Simulation {
/// The simulation environment
pub environment: SimulationEnvironment,
/// A list of agents
pub object_agents: HashMap<RailwayObjectId, Box<dyn DecisionAgent<A = RailMovableAction>>>,
/// A list of metrics handlers
pub metrics_handlers: Vec<Box<dyn MetricsHandler>>,
/// Elapsed time of simulation
elapsed_time: Duration,
/// simulation pause state
pub is_paused: bool,
/// Speedup factor of the simulation
pub speedup_factor: f64,
}
unsafe impl Send for Simulation {}
unsafe impl Sync for Simulation {}
impl fmt::Debug for Simulation {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
f.debug_struct("Simulation")
.field("railway_objects", &self.environment.objects.len())
.finish()
}
}
impl Simulation {
/// Creates a new simulation with the given railway graph.
///
/// # Arguments
///
/// * `graph` - The railway graph representing the railway infrastructure.
///
/// # Returns
///
/// A new `Simulation` instance.
///
pub fn new(graph: RailwayGraph) -> Self {
let default_metrics_handler: Vec<Box<dyn MetricsHandler>> = vec![
Box::new(ActionCountHandler::new()),
Box::new(TargetReachedHandler::new()),
];
Self {
environment: SimulationEnvironment {
graph,
objects: HashMap::new(),
},
object_agents: HashMap::new(),
metrics_handlers: default_metrics_handler,
elapsed_time: Duration::default(),
is_paused: false,
speedup_factor: 1.0,
}
}
/// Returns a reference to the observable environment of the simulation.
///
/// The observable environment allows external components to access the
/// state of the simulation without being able to modify it. This is useful
/// for agents to observe the simulation state and make decisions based on it.
///
/// # Returns
///
/// A reference to a trait object implementing the `ObservableEnvironment` trait,
/// which provides read-only access to the simulation environment.
///
pub fn get_observable_environment(&self) -> &(dyn ObservableEnvironment + 'static) {
self.environment.as_observable_env()
}
/// Adds a moveable railway object to the simulation.
///
/// # Arguments
///
/// * `object` - The moveable railway object to be added to the simulation.
///
/// # Returns
///
/// A boolean indicating if the object was successfully added.
///
pub fn add_object(
&mut self,
object: Box<dyn SimulationObject>,
agent: Option<Box<dyn DecisionAgent<A = RailMovableAction>>>,
) -> bool {
if let std::collections::hash_map::Entry::Vacant(e) =
self.environment.objects.entry(object.id())
{
let id = object.id();
e.insert(object);
if let Some(agent) = agent {
self.add_agent_for_object(id, agent);
}
true
} else {
false
}
}
/// Removes a moveable railway object from the simulation.
///
/// # Arguments
///
/// * `id` - The unique identifier of the moveable railway object to be removed.
///
/// # Returns
///
/// A boolean indicating if the object was successfully removed.
///
pub fn remove_object(&mut self, id: i64) -> bool {
self.environment.objects.remove(&id).is_some()
}
/// Adds a decision agent for an object in the simulation.
///
/// # Arguments
///
/// * `object_id` - The unique identifier of the object.
/// * `agent` - The decision agent to be added.
///
/// # Returns
///
/// A boolean indicating if the agent was successfully added.
///
pub fn add_agent_for_object(
&mut self,
object_id: RailwayObjectId,
agent: Box<dyn DecisionAgent<A = RailMovableAction>>,
) -> bool {
if self.environment.objects.contains_key(&object_id) {
self.object_agents.insert(object_id, agent);
true
} else {
false
}
}
/// Registers a metrics handler for the simulation.
///
/// This function adds a new metrics handler to the simulation. The metrics handler
/// will be used to process events and gather metrics during the simulation run.
///
/// # Arguments
///
/// * `handler` - A boxed metrics handler that implements the `MetricsHandler` trait.
///
pub fn register_metrics_handler(&mut self, handler: Box<dyn MetricsHandler>) {
self.metrics_handlers.push(handler);
}
/// Handles a simulation event by passing it to all registered metrics handlers.
///
/// This function is called internally by the simulation engine whenever a simulation
/// event occurs. It iterates through all registered metrics handlers and calls their
/// `handle` function with the event as an argument.
///
/// # Arguments
///
/// * `event` - A reference to a simulation event that implements the `SimulationEvent` trait.
///
/// This function is not meant to be called directly by the user. It is called internally
/// by the simulation engine.
fn handle_event(&mut self, event: &dyn SimulationEvent) {
for handler in &mut self.metrics_handlers {
handler.handle(event);
}
}
/// Updates the simulation state based on the given delta time and the speedup factor.
///
/// # Arguments
///
/// * `delta_time` - The elapsed time since the last update.
pub fn update(&mut self, delta_time: Duration) {
if !self.is_paused {
let int_speedup_factor = self.speedup_factor.floor() as u32;
let fractional_speedup_factor = self.speedup_factor.fract();
let full_delta_time = delta_time;
let fractional_delta_time = delta_time.mul_f64(fractional_speedup_factor);
// Update the total elapsed time.
let scaled_delta_time = delta_time.mul_f64(self.speedup_factor);
self.elapsed_time += scaled_delta_time;
for _ in 0..int_speedup_factor {
let object_ids: Vec<_> = self.environment.objects.keys().cloned().collect();
// Iterate over each object in the simulation and update its state based on the delta time and speedup factor.
for id in object_ids {
self.update_object(full_delta_time, id);
}
}
if fractional_speedup_factor > 0.0 {
for _ in 0..int_speedup_factor {
let object_ids: Vec<_> = self.environment.objects.keys().cloned().collect();
for id in object_ids {
self.update_object(fractional_delta_time, id);
}
}
}
}
}
/// Updates the state of the object with the given id based on the given delta time.
///
/// # Arguments
///
/// * `delta_time` - The elapsed time since the last update.
/// * `id` - The unique identifier of the moveable railway object to be updated.
fn update_object(&mut self, delta_time: Duration, id: RailwayObjectId) {
if let Some(agent) = self.object_agents.get_mut(&id) {
// Observe the environment.
agent.observe(&self.environment);
}
let mut event = None;
if let Some(object) = self.environment.objects.get_mut(&id) {
// Get the action from the decision agent.
if let Some(agent) = self.object_agents.get(&id) {
let action = agent.next_action(Some(delta_time));
// Update the acceleration based on the action.
match action {
RailMovableAction::Stop => {
let speed = object.speed();
if speed.is_sign_positive() {
object.set_acceleration(-object.acceleration().abs());
} else if speed.is_sign_negative() {
object.set_acceleration(object.acceleration().abs());
} else {
object.set_acceleration(Acceleration::new::<meter_per_second_squared>(
0.0,
));
}
}
RailMovableAction::AccelerateForward { acceleration } => {
object.set_acceleration(Acceleration::new::<meter_per_second_squared>(
acceleration as f64,
));
}
RailMovableAction::AccelerateBackward { acceleration } => {
object.set_acceleration(Acceleration::new::<meter_per_second_squared>(
-acceleration as f64,
));
}
}
event = Some(RailMovableEvent { action });
// Update speed based on the acceleration
object.set_speed(object.max_speed().min(
object.speed()
+ Time::new::<second>(delta_time.as_secs_f64()) * object.acceleration(),
));
}
}
if let Some(event) = event {
self.handle_event(&event);
}
self.update_object_position(id, delta_time);
self.update_train_target(id);
}
fn update_object_position(&mut self, id: RailwayObjectId, delta_time: Duration) {
const NEXT_NODE_DISTANCE_TOLERANCE: f64 = 1.0;
if let Some(object) = self.environment.objects.get_mut(&id) {
if let Some(current_position) = object.position() {
let current_speed = object.speed();
let target = object.next_target();
if let Some(current_location) = object.geo_location() {
let graph = &self.environment.graph;
let next_node =
graph.get_next_node(current_position, target.unwrap_or_default());
if let Some(next_node_id) = next_node {
let edge = graph
.railway_edge(current_position, next_node_id)
.expect("Invalid edge");
let next_node = graph.get_node_by_id(next_node_id).unwrap();
let direction_coord = next_node.location;
let distance_to_travel =
current_speed * Time::new::<second>(delta_time.as_secs_f64());
let new_geo_location = edge.position_on_edge(
current_location,
distance_to_travel,
direction_coord,
);
let current_node = graph.get_node_by_id(current_position).unwrap();
// reached next node
if is_middle_coord_between(
current_node.location,
next_node.location,
new_geo_location,
) || edge.distance_to_end(new_geo_location, direction_coord)
< Length::new::<meter>(NEXT_NODE_DISTANCE_TOLERANCE)
{
object.set_position(Some(next_node_id));
}
object.set_geo_location(Some(new_geo_location));
} else {
warn!("object {} has no next node, unsetting target", object.id());
object.set_next_target(None);
}
} else {
warn!("object {} has no coordinates", object.id())
}
}
}
}
fn update_train_target(&mut self, id: RailwayObjectId) {
let mut event = None;
if let Some(object) = self.environment.objects.get_mut(&id) {
if let Some(train) = object.as_any_mut().downcast_mut::<Train>() {
if train.next_target().is_none() || train.position() == train.next_target() {
let reachable_nodes = self
.environment
.graph
.reachable_nodes(train.position().unwrap());
if !reachable_nodes.is_empty() {
event = Some(TargetReachedEvent {});
let mut rng = rand::thread_rng();
train.set_next_target(Some(*reachable_nodes.choose(&mut rng).unwrap()));
}
}
}
}
if let Some(event) = event {
self.handle_event(&event);
}
}
}