1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84
//! Sampler module for text generation.
//!
//! This module contains the `Sampler` trait and its implementations which are
//! used for sampling tokens based on the output logits from a language model.
use candle_core::{Result, Tensor};
use candle_transformers::generation::LogitsProcessor;
/// A trait for sampling a token based on logits output.
///
/// This trait defines a method for sampling a single token from a distribution
/// represented by logits.
pub trait Sampler {
/// Samples a token based on provided logits.
///
/// # Arguments
///
/// * `logits` - A reference to a tensor containing logits output from the model.
///
/// # Returns
///
/// Returns a `Result` containing the sampled token's ID.
fn sample(&mut self, logits: &Tensor) -> Result<u32>;
}
/// Implementation of `Sampler` for the `LogitsProcessor` from `candle_transformers`.
impl Sampler for LogitsProcessor {
fn sample(&mut self, logits: &Tensor) -> Result<u32> {
Self::sample(self, logits)
}
}
/// A dummy implementation of `Sampler` for testing purposes.
///
/// This sampler sequentially returns incrementing integers as tokens.
pub struct DummySampler {
index: usize,
}
impl DummySampler {
/// Creates a new `DummySampler`.
pub fn new() -> Self {
Self { index: 0 }
}
}
/// Provides a default instance of `DummySampler`.
impl Default for DummySampler {
fn default() -> Self {
Self::new()
}
}
/// Implementation of `Sampler` for `DummySampler`.
impl Sampler for DummySampler {
fn sample(&mut self, _logits: &Tensor) -> Result<u32> {
self.index += 1;
Ok(self.index as u32 - 1)
}
}
#[cfg(test)]
mod tests {
use super::*;
use candle_core::Device;
/// Tests the `DummySampler` to ensure it returns incrementing integers.
#[test]
fn test_dummy_sampler() {
let mut sampler = DummySampler::new();
assert_eq!(
sampler
.sample(&Tensor::new(&[1.0], &Device::Cpu).unwrap())
.unwrap(),
0
);
assert_eq!(
sampler
.sample(&Tensor::new(&[1.0], &Device::Cpu).unwrap())
.unwrap(),
1
);
}
}